Asthma and Chronic Obstructive Pulmonary Disease (COPD)

Diagnostic and management fundamentals

Preston Seaberg, M.D.

Learning Objectives

- Contrast pathophysiology of asthma and COPD
- Recite diagnostic criteria for asthma and COPD
- Create a management plan for a patient with asthma, COPD or asthma-COPD overlap syndrome
- Identify the interventions associated with improved or worsened mortality in those with asthma or COPD

Overall, Things are Better Today than in the Past

- Preventable deaths decreasing!
- Extreme poverty decreasing!
 - More manufacturing, roads, cars
 - But with these, more pollution

COPD: It's Even Worse than I Thought

- Year 2000, COPD 4th leading cause of death
- Year 2016: COPD 3rd leading cause of death
 - > 3 million COPD deaths globally
- In all but low-income countries, now a leading cause of death

Source: WHO

Pathophysiology of Asthma

- Bronchial inflammation
 - Generally, the cells involved in allergic response
- Bronchial hyper-responsiveness
 - Inhaled stimuli <u>and</u> cell-based mediators (e.g. histamine)
 - Dust, fumes, allergens, exercise, extreme temperatures, respiratory infections
- Result: airflow limitation, most pronounced in expiration, generally with high degree of reversibility with bronchodilators
 - Plus, 12-fold risk of developing COPD

Source: GINA, GOLD

Pathophysiology of COPD

- Repetitive or chronic insults
 - Inhalational exposure (e.g. cigarette smoke)
 - Chronic inflammation
 - Protease activity (e.g. alpha 1-antitrypsin deficiency)
- Causing some mixture of
 - Airway fibrosis and narrowing
 - Alveolar wall destruction
 - Goblet cell hyperplasia
 - Ciliary impairment
- Resulting in airflow limitation poorly responsive to bronchodilators
 - +/- hypoxia, hypercapnia, or increased pulmonary vascular resistance
 Source: GOLD

Clinical Presentation of Asthma or COPD

- Chronic cough
- Wheeze
- Dyspnea, especially on exertion
- Recurrent lower respiratory tract infections (COPD > asthma)
- Increased perceived severity of respiratory tract infections
- Variability in symptom severity (asthma >> COPD)

Diagnosis of Asthma and COPD

Spirometric diagnosis with symptoms

There is no substitute

...but let us try to find one!

Can Airflow Limitation be Diagnosed Without Spirometry? (1/2)

Scenario	Likelihood of Airflow Limitation
Well 54-year-old US man with wheezing	21%
Well 54-year-old US man with 19 pack-years of cigarette smoking	6%
Well 54-year-old US man, 41 pack-years of cigarette smoking, in the US	60%
As above, but in Southeast Asia*	55%
As above, but in Africa*	68%
70-year-old wheezing man with 55 years of cigarette smoking and maximum laryngeal height of 3.8 cm	99%

Note: establishing presence of airflow limitation is only the first step Plus, even among heavy smokers, < 50% will develop COPD

Can Airflow Limitation be Diagnosed Without Spirometry? (2/2)

Single Best Findings That Are the Easiest to Measure	Likelihood Ratio
Smoking status, > 40 pack-years	12
Auscultated wheezing or laryngeal height ≤ 4 cm	×4
To "Rule In" Obstructive Disease, Must Use a Multivariate Model	Posterior Odds of Disease, Probability (%)
Smoking > 55 y and wheezing symptoms and auscultated wheezing	156 (99)
History of OAD and smoking > 40 pack-years and age ≥ 45 y and laryngeal height ≤ 4 cm	220 (99)
To "Rule Out" Obstructive Disease, Must Use a Multivariate Model	Posterior Odds of Disease, Probability (%)
Smoking < 30 y and no wheezing symptoms and no auscultated wheezing	0.02 (1.5)
No history of OAD and smoking < 40 pack-years and age < 45 y and laryngeal height > 4 cm	0.03 (3)

Note: establishing presence of airflow limitation is only the first step

Diagnosis of Asthma and COPD

- Consider other causes of similar symptoms
 - Lung cancer
 - Chronic infections (e.g. tuberculosis)
 - Congestive heart failure
 - Interstitial lung disease
 - For cough, upper airway cough syndrome, gastroesophageal reflux disease or medications
- Spirometry for chronic, bothersome symptoms
 - No role for spirometry if no symptoms!

Diagnosing Asthma or COPD

- FEV1/FVC ratio < 70% of predicted = airflow obstruction
 - Forced expiratory volume over 1 second (FEV₁)
 - Forced vital capacity (FVC)
 - Reference values by age, height, sex, race
 - Persistent limitation after bronchodilator:
 COPD
 - FEV₁ improves ≥12% and ≥ 200 mL after bronchodilator: asthma

Pitfalls

- Restrictive disease
- Poor quality study
- Intermittent obstruction

Source: MKSAP 18

Notes on Airway Obstruction

Flow-volume loops in upper airway obstruction

- (A) Normal flow-volume loop: the expiratory portion of the flow-volume curve is characterized by a rapid rise to the peak flow rate, followed by a nearly linear fall in flow. The inspiratory curve is a relatively symmetrical, saddle-shaped curve.
- (B) Fixed upper airway obstruction (can be intrathoracic or extrathoracic): flow limitation and flattening are noted in both the inspiratory and expiratory limbs of the flow-volume loop.
- (C) Dynamic (or variable, nonfixed) extrathoracic obstruction: with flow limitation and flattening are noted on the inspiratory limb of the loop.
- (D) Dynamic (or variable, nonfixed) intrathoracic obstruction: flow limitation and flattening are noted on the expiratory limb of the loop.

Special Asthma Variants

- Allergic variant: high sputum eosinophils, high exhaled nitric oxide
 - If refractory, anti-IgE, anti-IL4 or anti-IL5 treatment may be considered
- Cough variant asthma
- Exercise-induced asthma
 - Give β₂-agonists prior to exercise
- Occupational asthma
- Aspirin-exacerbated respiratory disease
- Reactive airways dysfunction syndrome
 - New, persistent (3 months or longer) asthma symptoms after intense inhalational exposure
- Allergic bronchopulminary aspergillosis
 - High IgE, Aspergillus hypersensitivity, imaging findings
 - Treat with steroids ± antifungals

Chronic Cough with Normal Spirometry

- Spirometry after "provoking" with exercise, cold air, or methacholine (known as "bronchoprovocation")
- Chest radiograph, especially if at risk for lung cancer or indolent infection (e.g. TB)
- Exclude medication side effect (e.g. ACE inhibitors)
- Consider empiric, stepwise treatment
 - Upper airway cough syndrome: nasal corticosteroid
 - Gastroesophageal reflux disease: PPI or H₂ blocker
 - If no bronchoprovocation, could trial asthma treatment

Asthma/COPD Pharmacotherapy Acronyms

- SABA = short-acting β_2 -agonist (e.g. albuterol)
- SAMA = short-acting muscarinic antagonist (e.g. ipratroium)
- LABA = long-acting β_2 -agonist (e.g. salmeterol)
- LAMA = long-acting muscarinic antagonist (e.g. tiotropium)
- LTRA = leukotriene receptor antagonist (e.g. montelukast)
- ICS = inhaled corticosteroid (e.g. beclomethasone)
- OCS = oral corticosteroid (e.g. prednisone)

Asthma Treatment

+LAMA?

Most adults and adolescents start at step 2

Reference: GINA

Special Note

- Don't use LABA without concomitant ICS
 - Associated with higher risk of asthma-related death

GINA Questionnaire to Assess Asthma Control

- In the past 4 weeks, as the patient had:
 - Daytime symptoms more than 2x/week?
 - Any night waking due to asthma?
 - SABA reliever needed more than 2x/wk?
 - Any activity limitation due to asthma?
- None of these: well controlled
- 1-2 of these: partly controlled
- 3-4 of these: uncontrolled

Evaluation of Uncontrolled Asthma

- First, verify inhaler technique
- Next, evaluate for triggers "AIR-SMOG"
 - Allergens
 - Irritants/infection
 - Rhinitis/sinusitis
 - Smoking/sleep apnea/stress
 - Medications (β-blockers, NSAIDs)
 - Occupational exposure
 - Gastroesophageal reflux disease

Step Up Asthma Treatment if Truly Uncontrolled

- First, verify inhaler technique and adherence
- Next, control triggers
- Next, step up therapy
 - If symptoms are severe, step up therapy while addressing the other components

Asthma Action Plan for Exacerbations

- Early and mild:
 - Increase use of reliever (e.g. albuterol)
 - Increase controller (quadruple dose)
 - Review response

Asthma Action Plan for Exacerbations

- Late or moderate
 - Peak expiratory flow or FEV1 < 60% of patient's best
 - No improvement after 48 hours
 - Steps:
 - Continue reliever
 - Continue controller
 - Add prednisone or prednisolone 40-50 mg daily (adults; weight-based in children)
 - Evaluation by clinician

Treating Asthma Exacerbations in Clinic

- No tachypnea, hypoxia, increased work of breathing
 - Administer 4-10 puffs of short-acting β₂agonist by metered dose inhaler+spacer,
 or nebulizer
 - If improving, can return home with close follow-up
 - If not improving, transfer to acute care facility

Treating Severe Asthma Exacerbations

- Tachypnea, hypoxia, increased work of breathing or decreased level of consciousness
 - Transfer to acute care facility
 - Nebulized bronchodilators, systemic corticosteroid, possibly IV magnesium sulfate, intensive care interventions if indicated

Asthma Treatments in Pregnancy

- Oral and inhaled corticosteroids
- Short- and long-acting β_2 -agonists
- Leukotriene receptor antagonists

No evidence of fetal harm for any of above

Principles of COPD Management

- Smoking cessation
- Minimization of particulate exposure
 - Indoor open fires, poorly functioning stove
 - Occupational dusts or fumes
- Protect from infections
 - Influenza virus, pneumococcus (PPSV-23 ± PCV-13)
- Treatment intensity depends on symptoms, risk of exacerbations
- Pulmonary rehabilitation, if available
- Supplemental oxygen, if candidate

Address Smoking at Each Visit

- One study in Nigeria
 - 70% of patients with COPD were smoking
 - 32% were counseled on smoking cessation

Desalu et al (2013)

- Counseling improves quit rates
- Use nicotine replacement therapy, pharmacotherapy or a combination
 - Varenicline, bupropion are main medications

GOLD Grading: Spirometry

If FEV1/FVC <0.7		
FEV1 ≥ 80%	Mild	
FEV1 <80% and ≥ 50%	Moderate	
FEV1 <50% and ≥ 30%	Severe	
FEV1 <30%	Very	
	Severe	

A single FEV1 has low predictive value for exacerbations A <u>decreasing</u> FEV1 has more predictive value

GOLD Staging: Symptoms and Exacerbations

- mMRC 0: breathless with strenuous exercise only
- mMRC 1: breathless when hurrying on level ground, or when walking up slight incline
- mMRC 2: must walk more slowly than peers, or breathless walking at own pace
- mMRC 3: breathless walking 100 m
- mMRC 4: breathless dressing

- Low risk: 0-1 exacerbation in one year
- High risk: 2+ exacerbations in one year

Pharmacotherapy for Stable COPD

ICS risky if frequent infections or history of mycobacterial infection

Reference: GOLD

COPD Medications that Reduce Mortality?

Just one, but only for some

- Supplemental oxygen indications:
 - Resting SpO2 < 90% with right heart failure or erythrocytosis, or
 - Resting SpO2 < 89% without right heart failure
 - Mortality benefit really for those with resting SpO2 < 81%

Treatment of COPD Exacerbation

- Nonsevere: bothersome symptoms without decompensation
 - Alert
 - Minimal if any tachypnea
 - Minimal change in SpO2 from baseline
 - Any one of these:
 - Increased dyspnea
 - Increased sputum volume
 - Increased sputum production
- Treat nonsevere exacerbations at home (or possibly hospital)
 - SABA ± SAMA every 4-6 hours and as needed
 - Steroids: 5 days of prednisone 40 mg daily
 - Antibiotics: only if evidence of pneumonia

Treatment of COPD Exacerbation

- Severe: respiratory failure, or any two of
 - Increased dyspnea
 - Increased volume of sputum
 - Increased purulence of sputum
- Treat severe exacerbations in hospital:
 - SABA ± SAMA every 4-6 hours and as needed
 - Steroids: 5 days of prednisone 40 mg daily
 - Occasionally (but not often) longer and more
 - Antibiotics: ceftriaxone or levofloxacin
 - Cefepime or piperacillin-tazobactam if risk of drugresistant organisms
 - Respiratory failure
 - CPAP or BiPAP if awake
 - Intubation and mechanical ventilation if obtunded
 - Nonresolving: consider pulmonary embolism

Asthma-COPD Overlap Syndrome (ACOS)

- Major Criteria (need 2)
 - Positive bronchodilator response (FEV1 ≥15% and ≥400 ml)
 - Sputum eosinophilia
 - Personal history of asthma
- Minor Criteria (need 2)
 - High total IgE
 - Personal history of atopy
 - Positive bronchodilator (FEV1 ≥12% and ≥200 ml)
- Reach for ICS earlier here than for those with COPD
 Soler-Cataluna et al. Archivos de Bronconeumologia
 2012; 48(9).

Advanced COPD

- Severe symptoms despite optimal medications
- Numerous exacerbations despite optimal medications
- Consider procedural treatments, if available
- Consider specialty palliative care ± hospice, if available
 - Opioids may be used for dyspnea

Procedural Treatment Options for Severe Disease

- Bronchial thermoplasty for severe, refractory asthma
 - Radiofrequency ablation of airway smooth muscle
 - Only if FEV₁ > 60%
 - Recommended in context of clinical trial
 - Quality of life purposes
- Lung volume reduction surgery for some with severe, refractory COPD
 - Only for very carefully selected patients
 - Quality of life purposes
- Lung transplantation
 - Only for very carefully selected patients
 - Potential to improve quality <u>and</u> length of life

Summary

Diagnosing Asthma or COPD

- FEV1/FVC ratio < 70% of predicted = airflow obstruction
 - Forced expiratory volume over 1 second (FEV₁)
 - Forced vital capacity (FVC)
 - Reference values by age, height, sex, race
 - Persistent limitation after bronchodilator:
 COPD
 - FEV₁ improves ≥12% and ≥ 200 mL after bronchodilator: asthma

Asthma Treatment

+LAMA?

Most adults and adolescents start at step 2

Reference: GINA

Pharmacotherapy for Stable COPD

ICS risky if frequent infections or history of mycobacterial infection

Reference: GOLD

Asthma Action Plan for Exacerbations

- Increase use of reliever (e.g. albuterol)
- Quadruple dose of controller
- Add oral corticosteroids if no improvement, or if severe
 - Prednisone 40 mg daily reasonable to start
 - Duration less clear than in COPD, and based on symptoms
 - 5-14 days, typically

Treatment of COPD Exacerbation

- Nonsevere: bothersome symptoms without decompensation
- Severe: two cardinal manifestations or clinical decompensation
- Treat nonsevere exacerbations at home (or possibly hospital)
- SABA ± SAMA every 4-6 hours and as needed
- Steroids: 5 days of prednisone 40 mg daily
- Antibiotics:
 - Nonsevere exacerbation: only if evidence of pneumonia
 - Any severe exacerbation
- CPAP or BiPAP if awake with respiratory failure
- Intubation with mechanical ventilation if respiratory failure and obtunded

References (1/2)

- Airflow Limitation. In: Simel DL, Rennie D. eds. The Rational Clinical Examination: Evidence-Based Clinical Diagnosis. McGraw-Hill; Accessed September 10, 2020. https://jamaevidence.mhmedical.com/content.aspx?bookid=845§ionid=61357500
- Adeloye, Chua, Lee et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. <u>J Glob Health</u>. 2015 Dec; 5(2): 020415.
- Reddel H, Bacharier L, Bateman E et al. Pocket Guide for Asthma Management and Prevention. 2020. https://ginasthma.org/wp-content/uploads/2020/04/Main-pocket-guide_2020_04_03-final-wms.pdf.
- Inhaled corticosteroid doses for NICE's asthma guideline.
 https://www.nice.org.uk/guidance/ng80/resources/inhaled-corticosteroid-doses-pdf-4731528781
- American College of Physicians. Airways Disease. In: Medical Knowledge Self-Assessment Program (MKSAP) 18. Philadelphia, PA: American College of Physicians.
- Aboussouan LS and Stoller JK. "Flow-volume loops." In: UpToDate, Barnes PJ and Wood RA (Eds), UpToDate, Waltham, MA, 2019.
- Vogelmeier C, Agusti A, Anzueto A et al. GLOBAL STRATEGY FOR THE DIAGNOSIS, MANAGEMENT, AND PREVENTION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE (2020 REPORT).

References (2/2)

- Desalu OO, Onyedum CC, Adeoti AO et al. Guideline-based COPD management in a resource-limited setting physicians' understanding, adherence and barriers: a cross-sectional survey of internal and family medicine hospital-based physicians in Nigeria. Prim Care Respir J. 2013 Mar;22(1):79-85. doi: 10.4104/pcrj.2013.00014.
- Soler-Cataluna JJ, Cosio B, Izquierdo JL et al. Consensus document on the overlap phenotype COPD-asthma in COPD. Arch Bronconeumol. 2012 Sep;48(9):331-7. doi: 10.1016/j.arbres.2011.12.009. Epub 2012 Feb 15.